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Constrained Refinements of Crystal Structures and their Programming 
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The method of factorizing the derivatives matrix when applying constraints is discussed in terms of 
three similar examples. First 'symmetry constraint', in which molecules in the crystal must conform 
to a given molecular symmetry. Second 'identical molecule constraint', in which molecules of the same 
chemical type but unrelated by symmetry are required to have the same shape. Finally the well estab- 
lished 'shape constraint', where parts of a structure are constrained to a definite well known shape. 
A flow diagram for one of the constrained refinements is given, showing how the addition of the con- 
straint can be done by additional programming rather than large scale alteration of the basic program. 
This suggests a program system with a different philosophy from that in present use, giving greater 
flexibility and efficiency than heretofore. 

Introduction 

The commonest objective of crystallography is to de- 
termine interatomic bond distances and angles and the 
overall atomic arrangement in crystals. Determination 
of atomic positional parameters is thus of primary im- 
portance, and in this paper constraints on the posi- 
tional parameters only are considered. Two forms of 
thermal parameter constraint have been used with suc- 
cess (Pawley, 1966; Duckworth, Willis & Pawley, 
1969), but these are not reviewed here. 

Having obtained a number of bond lengths and 
angles or a particular molecular geometry the crystal- 
lographer is faced with the assessment of his results. 
As a simple example he might wish to know whether 
two bonds are of the same length or not. He thus 
wishes to know whether a model in which the bonds 
in question are made to be the same in length fits the 
parameters of the refined structure. In general the as- 
sessment takes the form of fitting a model, and it is 
the author's contention (Pawley, 1969) that the model 
in question should be incorporated throughout the 
refinement, being removed for comparison purposes 
only when the refinement is complete. When the model 
is such that the derivatives matrix can be factorized, 
as in equation (3), the application of constraints is 
simplified. 

During the first part of the refinement the model 
determines the parameters exactly. This involves the 
imposition of relationships between the parameters, 
and these relationships we call the constraints of the 
problem. The constraints reduce the number of vari- 
ables to be fitted to the diffraction data, which in some 
cases considerably reduces the amount of computation 
time required to achieve complete refinement. When 
this is obtained the constraints should be lifted and 
refinement by the usual procedure continued. The 
question posed by the model is then answered by a 
statistical comparison of the goodness of fit obtained 
in the two refinements. Hamilton's (1965) tests are 

now generally used for statistical tests though the 
simple procedure used by Pawley (1966) might 
suffice. 

It is easy to make this suggestion for attacking crys- 
tallographic problems, but as the number of questions 
to be asked is large the amount of program writing 
is large. It behoves us therefore to develop our pro- 
grams so that they are compatible with a general 
system, such as the X-ray 67 system (Stewart, Kundell 
& Chastain, 1967) starting with the basic program of 
such a system. The alterations are best done in the 
form of additions so that the basic program is readily 
recognizable. Having done this one is tempted to sug- 
gest an alternative program system philosophy. This 
is outlined in a later section. 

Symmetry constraint 

Consider a crystal containing molecules which, when 
not in the solid state, have a higher symmetry than 
the crystal site symmetry. We wish to know whether 
we can detect distortion of the molecule by the crystal 
forces with a structure determination. If we cannot, 
then the best molecular geometry is obtained by aver- 
aging the values for the bonds which are related by 
the symmetry of the molecule in the free state. The 
most reliable result is obtained, however, by constrain- 
ing the parameters so that the molecule has always 
got its free state symmetry. 

Let the coordinates of a molecule in an Angstrom 
coordinate system be Xj and GXj. Here G is the group 
symmetry operation of the molecule in the free state 
which is not used in the crystal structure. It is assumed 
for convenience that there is only one operation G 
involved, though extention to a larger number is trivial. 
Let the molecule be rotated to the orientation appro- 
priate to the crystal structure by the general rotation 
matrix R. This matrix is determined by the three Euler 
angles, ~0,0, ~, (see Goldstein, 1959). 
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An alternative definition is given by Scheringer (1963) 
which avoids any illconditioning, which will occur with 
the above definition for the case when 0 is small. 

Let the matrix A transform from crystal fractional 
coordinates to the Angstrom orthogonal system. We 
now use its inverse on the rotated molecule and then 
add the vector u, a translation vector in crystal co- 
ordinates which places the molecule at the correct posi- 
tion in the unit cell, and we obtain the fractional co- 
ordinates of the molecule. These are 

x I = A  -1 . R .  X j + u  
x}=A -1 . R .  G .  X j + u .  (2) 

The refinement variables are Xy, ~0, 0, V and u, from 
which at the beginning of any least-squares cycle the 
usual positional parameters can be generated. This re- 
quires the addition of a subroutine. 

Let P be any parameter in the unconstrained prob- 
lem and p any parameter in the constrained problem. 
We need to calculate the differentials OF/@, where F 
is the structure factor (complex) for a particular re- 
flexion. These could be written down explicitly and 
programmed efficiently, but with the loss of a little 
efficiency we can gain in programming flexibility. We 
will try to use the basic unconstrained problem pro- 
gram and make additions to cater for the constraints. 
We must avoid the use of Lagrange's undetermined 
multipliers unless the constraint involves a very few 
parameters, as this method causes an increase rather 
than a decrease in the size of the least-squares matrix 
to be set up and inverted. 

The differentials we need are: 

OF OF BP 
- eS -8~p • 3p . (3) 0p 

The basic program determines all the OF/OP, so all we 
need to do is to add a section to the existing program 
to perform the above summation, knowing beforehand 
the OP/Op. As all these differentials are purely real the 
following equations are true. 

~ I F I  Z OIFI. 0P 
Op p 0P - ~ p '  

0F 2 0F 2 8P 
Op - .S . . . . . . . .  . (4) 

e 8P Op 

This ensures that any alteration for a program which 
refines on ]F[ is appropriate for refinement on FL 

The differentials for P = x l = ( x ~ , y j ,  z j ) w i t h  respect 
to p = X j = ( X j ,  Yi, Zj) are easy to write down: 

8x f fOX~=(A -1 • R)u;  Oyf fOXj=(A -I . R)zl etc. 

using equation (2). Similarly 

8 x ~ / S X j = ( n  -1 . R .  G)~I; 8y~/OXj=(A -1 . R .  G)2~ etc. 

All these differentials can be found by the subroutine 
which has to be called at the beginning of each cycle, 
and the summation of equation (3) requires a sub- 
routine to be called after setting up the 8F/SP for each 
separate observation. Let us analyse the other dif- 
ferentials to see if they can be treated in a similar 
simple manner. 

For p = ~0, (0 and ~ similar) 

0xj _ A -  1 OR 

But 

0R&p \ o/-Sin~° cos~o! )  
- R~,. R0. l-COS ~0 - sin ~0 . 

0 

Finally for p = ul, (u2 and u3 similar) 

~Xff /OU 1 = 1 ; Oyj/Oul = 0 etc. 

All these differentials can clearly be treated in the same 
t manner as those for p = Xj  etc. and those for the xj 

are similar to the above. 
Differentials for thermal and scale parameters are 

not affected by the constraints. The symmetry opera- 
tions do not present any further difficulty as they must 
be accounted for in the basic program. 

Identical molecule constraint 

Consider a molecular crystal in which there are more 
than one chemically identical molecules within the 
crystallographic asymmetric unit. For convenience let 
us take the case where there are just two such mol- 
ecules. In some instances the two molecular geometries 
are quite different, but for those instances where the 
geometries of the molecules are not significantly dif- 
ferent then a constraint to make them identical is called 
for. The problem is then rather similar to the symmetry 
constraint of the previous section. 

Let X~ be the orthogonal positional coordinates for 
one of the molecules, defining the shape of both mol- 
ecules. Then the fractional coordinates are 

x j = A  -1 . X j .  (5) 

No translational part is necessary, unlike equation (2), 
as the molecule is free to move in the orthogonal co- 
ordinate system. The second molecule then has frac- 
tional coordinates 

x;=A-S .R .X,+u  (6) 

where R and u have the same meanings as in the pre- 
vious section. 

The differentials are simpler than for the symmetry 
constraint, namely 



G. S. PAWLEY 533 

O x j / a X j = ( A - ' ) l l ;  ( ~ y j / c g X j = ( A - 1 ) 2 1  etc., 

3 x f f 3 X j = ( A - '  . R)n; 3y~ /3X j=(A- '  . R)2, etc., 
8x,/c1(0=0; 8x~ /8¢=A -1 • 8R/8~o . X~ etc., 

t t 
OxdSu~=O; 8x j /3u l= 1 ; 8y /SUl=O etc. (7) 

Ox~ _ A -  1. 3R 1¢ .Xt  

OF OF OF 
Ou k, - f Ox'f ; Ou~ 

~gF 
- ~-3-~j etc. 

This constraint procedure often gives a large reduc- 
tion in the number of parameters, and this can be even 
larger if we make some constraint of the thermal par- 
ameters. For large structures it is often uneconomical 
to use anisotropic temperature factors, and even if they 
were used it would be difficult to justify the trans- 
formation of the thermal ellipsoids for one molecule 
to obtain ellipsoids for the other. Transformation of 
isotropic temperature factors is, however, plausible. 
This simply involves the use of the same mean square 
amplitude on chemically equivalent atoms. 

Let these mean-square amplitudes be U~, then the 
isotropic temperature factors for the two atoms which 
share the index j are 

Then 

B j =  2rgzu~ , 

OU~ - 2re 2 ~ + " (8) 

Shape  constraint  

In some crystals part of the structure is known to a 
greater accuracy than can be expected from the dif- 
fraction data. Any deviations encountered in an un- 
constrained refinement cannot be considered signifi- 
cant and the result obtained is not the most accurate 
fit to the data. A more accurate structure determina- 
tion is achieved by constraining the known part of the 
structure to the known shape. An argument to justify 
this is given by Pawley (1969). This constraint has been 
used with great success by Ibers and co-workers (see 
e.g. Enemark & Ibers, 1967). They constrain a number 
of phenyl rings which comprise most of the structure 
and have obtained greater accuracy in the parameters 
of the rest of the structure. An excellent example is 
that of La Placa & Ibers (1965). 

Let Xj be the atoms of the known part of the struc- 
ture which are to be repeated k times in different 
orientations and positions. Each orientation requires 
three Euler angles, each position a vector. The frac- 
tional coordinates for the atoms of the known part of 
the structure are then 

x~: = A  -1 . R ~ . X.~+u k , (9) 

but now the Xj are not variable parameters. We there- 
fore only need differentials for the Euler angles and 
the translation vector components. 

OF _ z e_F__. 
O~o~ ~,~,yj,,j Ox~j ape ' 

To reduce the number of parameters a physically 
plausible thermal parameter constraint is possible. All 
the atoms in one constrained group are likely to have 
similar temperature factors, so let us force all these 
atoms to have the same mean square amplitude U k. 
Then 

B~' = 2zc2U e 
and 

OF 1 OF 
dU e -  2rc2 Nj OBf " 

A flow diagram 

All the constraint procedures outlined above conform 
to our requirements stated in the introduction. Thus 
the basic program requires additional subroutines in 
order to apply the constraints but in no case does part 
of the basic program need alteration. This is best seen 
with the help of the flow diagram for the 'identical 
molecule constraint'. Here the left hand column is the 
path of the basic program, and the additions are on 
the right hand side. 

Future  sof tware  sys tems  

The content of this section should not be thought of 
as in any way complete. It is the author's hope that 
crystallographic software specialists will consider the 
advantages and disadvantages of a system on the fol- 
lowing lines. Because the basic program we have been 
discussing remains unscathed on introducing the con- 
straints, it would seem desirable to use a program 
which assembles another program appropriate to the 
particular job in hand. The former program we would 
call an Editor, which produces the second program in 
a form ready for compilation. 

This method of programming is by no means novel 
and is now gaining in popularity in computing circles. 
Indeed it is a program of this sort written by Dr J. G. 
Bums in Edinburgh which is currently being used to 
apply 'symmetry constraint' in the refinement of neu- 
tron diffraction data from perdeuteronaphthalene 
(Pawley & Yeats, 1969.) 

Our Editor is capable of inserting any of the con- 
straint subroutines desired, if and when these are writ- 
ten, but a much wider usefulness is foreseen for this 
type of system. If we glance at a number of programs 
written in the Fortran language we might find extended 
use of the ASSIGN statement. These statements map 
a path through a big program, avoiding large areas of 
unwanted orders and preventing the need for many 
conditional statements. An Editor program could cut 
out all the unnecessary parts of the big program and 
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I 
Usual input 

Preliminary calculation 

Calculate the structure fac- 
tor for a particular reflexion 

Sum up the least squares 
matrix. 

Yes 
/ 
\ More reflexions? . ~  

]No 
Invert the matrix and shift 

the parameters. 

Test to see if the param- 
eters are physically reason- 
able. 

Yes I 
More cycles? 

No 

Correlation matrix 

I 

Input the number  and size of the molecules to be treated as 
identical. A strict order for the atoms must be complied with. 

Finds starting values for the Euler angles and the transla- 
tions and alters the parameter list accordingly. This requires 
separate storage for the parameters and the atomic positions 
etc .  but this is standard practice. 

SETUP This subroutine is also used later in the program 
where it is described. 

Form the differentials of equations (7) and (8) using the dif- 
ferentials found while calculating the structure factor. 

SETUP This subroutine, also used above, transforms mol- 
ecule 1 to set atomic coordinates for the related 

molecules in the appropriate locations of the basic program, 
using the latest values for the Euler angles and translations. 

Sets numbers in special storage for the calculation of the 
differentials for the next refinement cycle. 
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reduce to a minimum the number of conditional state- 
ments. The result would be the most efficient program 
of the type used for the particular job, wasting no 
computer space. This program is of course discarded 
at the end of the job. 

Objections may be raised because the Editor will 
need to be run on a large computer. However this 
means that a large centralized computer can be used 
to produce programs which would then fit into smaller 
local computers. These would then do the time con- 
suming work. The Editor should be capable of writing 
the program in any desired dialect of the language, 
and even of inserting machine coded sections in the 
few places where the gain is worth the trouble. In 
least-squares refinement the time consuming part is in 
setting up the matrix, then in its inversion. Machine 
coding the former for any computer should not be too 
difficult, and the latter should be locally available as 
a fast symmetric matrix inverter is an asset to any com- 
puting laboratory. 

The proposed system will thus not take all the work 
from the local computer, but will give much more work 
to it. This is in contrast to the X-ray 67 type of system 

which runs a job, however small, on a computer with 
great capacity. The Editor system therefore provides 
a means of using our computing facilities to the max- 
imum capacity with increased flexibility. The program- 
ming effort to develop this system would be very large 
indeed, but the system does merit much more thought 
and consideration than has been given to it. 
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A Simple Method for Drawing Molecules using a Digital Plotter 
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(Received 25 October 1968) 

A simple fast method is described for producing three dimensional 'ball-and-stick' representations of 
molecules, using a digital plotter; any viewpoint at a reasonable distance away is suitable. 

Introduction 

The aim is to simplify the computing and drawing 
processes by reducing the picture to circles (represent- 
ing 'spherical' atoms), and bonds consisting of tapered 
bundles of straight lines. 

The method has to take into account two possible 
kinds of overlap in the picture; overlap of circles, and 
overlap of circles across bonds. Overlap of bonds 
across bonds is not taken into account, since they are 
drawn completely black; slight gaps could be left in 
a bond when it passes behind another; but the accuracy 
of the plotter (0.01") does not allow a neat enough 
split to be made. Clarity is not very much impaired 
by this omission. The bonds themselves present dif- 
ficulties in balancing plotter limitations (a pen step can 
only be made in one of eight directions) against a rea- 
sonably pleasant result. The bonds are given a forced 
taper, since perspective alone does not provide suf- 
ficient depth of view, unless a very close viewpoint is 
taken; in which case the sizes of the circles representing 

the atoms vary so much as to lose any meaning or 
identification purpose they may have. 

The taper was chosen on an arbitrary basis, subject 
to plotter considerations; no taper is provided 
on bonds between atoms whose distances from the 
viewer are similar (again an arbitrary distinction is 
made). 

The main data required for this method are: the 
angles between the coordinate axes (if not 90°), the 
viewpoint coordinates, and for each atom, a name (up 
to four characters), the coordinates and the radius of 
the sphere representing the atom and the names of all 
the other atoms connected to it. All coordinates are 
given in A. A facility is provided so that all atoms of 
one type, say those beginning with C, can be allotted 
the same radius without repeating this information for 
each atom individually. 

In the interests of simplicity, no labelling of the pic- 
ture is provided for, since a general label facility be- 
comes complicated when some atoms are partially or 
even wholly obscured. 


